是不是觉得这个猜想中的每一个专业术语都很难理解?不必惊讶也不必否定自己,因为霍奇猜想被称为“最难理解的千禧年数学难题”。
霍奇猜想作为“没有图形的几何问题”,是抽象数学问题的典型,它涉及很多微积分的计算,但这些微积分运算并非本科生学习过的、在实数或复数上进行,而是更一般、更抽象的背景上进行的微积分,非常抽象难懂。
它最大的意义就是在代数几何、数学分析和拓扑学这三个学科之间建立起一种基本的联系,一旦将之证明出来,就极可能实现这三门学科之间的有限统一。
当然,对于吃透了系统S级知识《揭秘霍奇猜想》的秦克来说,霍奇猜想在他眼里已没什么奥秘可言了,他随时可以将之证明出来,只需要花上两天时间写篇论文就行了。
但现在秦克不缺破解数学猜想的荣誉,而且他觉得S级知识《揭秘霍奇猜想》仅仅只针对霍奇猜想在代数几何、数学分析、拓扑学之中的应用,并不算真正完美,也不合他的心意。
凭着此时宗师级的数学水平,秦克的数学直觉告诉他,完全可以根据这份S级知识进行深入扩充,以霍奇猜想为突破口,建立起代数几何、数学分析、拓扑学“三位一体”的数学大一统雏形。
尤其是几何学,将会是大一统的核心。
而这个想法,与他目前进行着的“应用弦理论来控制放射性元素的‘衰变随机事件’”(也简称“放射性元素无害化”)有着极强的关联性。
前面也说过了,秦克四人小组是以将这个课题数学化,从数学的角度来解决实际的物理理论问题,而弦理论的核心是多维空间,它的进阶版m理论的最终目标,是要用一条规律来描述已知的所有力,而想达成这一点,必须在以几何为核心的基础数学甚至是数学大一统上取得突破。
这与秦克目前在着手的,根据霍奇猜想着手进行数学大一统的尝试不谋而合。
霍奇猜想的核心是代数几何,而秦克在上述放射性元素无害化的课题分工中,负责的也正好是几何学,此外还有拓扑学、复变函数、李群、微分方程、混沌论等子学科或相关学科。
秦克现在的想法是,先通过团队合作,建立以几何学为核心,沟通连接代数学、数论、概率论、数学分析、拓扑学等科目的数学大一统初步理论框架,再通过这个高端的数学理论框架来解决放射性元素的无害化问题,以及霍奇猜想。
可以说,无论是放射性元素的无害化问题,还是霍奇猜想,都只是验证他们“数学大一统初步理论框架”的试金石而已。
为了更好更快地完成放射性元素无害化的课题分工任务,秦克目前在做的就是沿着证明了霍奇猜想的方向,继续深入研究几何学,想方设法将之扩充为“新几何”。
本章未完,请点击下一页继续阅读! 第3页/共4页